
a Fermi National Accelerator Laboratory 

FERMILAB-Pub-90/213-T 

On the production of a W and jets 
at hadron colliders 

F.A. Berends, H. Kuijf and B. Tausk’ 
Instituut-Lorentz, University of Leiden, 

P.O.B. 9506, 2300 RA Leiden, The Netherlands. 

W.T. Giele 
Fermi National Accelerator Laboratory, 
P.O.B. 500, Batavia, IL 60510, U.S.A. 

October 1990 

Abstract 

In this paper the evaluation of matrix elements for a vector boson decaying into n partons 
(n 5 6) is presented. For this purpose recursive techniques and Weyl-van der Waerden spinor 
calculus are used. By appropriately crossing partons the amplitudes can be used to describe 
the production of a W and jets. The four jet case is of particular interest as background 
to interesting physics signals. Numerical results are given for present and future accelerator 
energies. Also the signal versus background question for top quark search is briefly discussed. 
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1 Introduction 

In a previous paper analytic expressions were given (11 for processes involving a vector boson V 

and 1 partons. The number 1 was restricted to 1 5 5. An evaluation which was more numerically 

oriented has also been published [2]. Both approaches numerically agree [3]. 

In other words the decay 

v + 1 partons (1.1) 

could be described in terms of the given expressions. By suitable crossing one obtains descriptions 

of 

e+ + e- -8 I jets, 

e-+-p - 
e- 

( 1 v. 
i S + (1 - 1) jets, 

P 
p+ P ( ) 

-f X + V + (1 - 2) jets. 

(1.2) 

0.3) 

(1.4) 

It turns out that for a number of reasons the process (1.4) with [ = 6 is of particular interest. This 

has to do with its role as background to interesting physics signals. 

The first signal is that of If production in a hadron collider, where one looks at the semileptonic 

t decay and at the quark decay of c. When the mass of the t is large enough that the b is sufficiently 

energetic to develop into a jet, one has the signal e+ and four jets: 

-+X+tf-X+W++W-+b+6+X+ef+4jets, 0.5) 

and similarly e- and four jets. Obviously the QCD process (1.4) can be a serious background. 

For the top quark search at hadron colliders one shall be interested in the signal (1.5) besides the 

cleaner dilepton signal plus two jets arising from both W’s decaying leptonically. 

The second signal of interest is that of heavy Higgs boson production by means of W-fusion, 

when one applies jet tagging [4]. 

P+P-+X+q,+qz+H+X+ql+&+W++W- 

* x + q1 + qz + e’ + q3 + 44 (1.6) 

Although the q1 and & develop into jets relatively close to the beam direction one hopes to detect 

these jets. Again the process (1.4) wilI constitute a background. Of course signals other than (1.6) 

may give easier evidence for the Higgs boson (see e.g. [5]), but it would be worthwhile to study 

(1.6) as well. 

For top masses below approximately 140 GeV the top quark could be found at the Tevatron in 

the near future and the knowledge of reaction (1.4) b ecomes rather relevant. When the top quark 
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Table 1. Counting statistics for the production of a W+ * e+v in hadron 
colliders. N stands for the number of final state partons, Process type denotes 
the flavour combination, # diagrams is the number of Feynman diagrams of 
the process type and # subprocesses is the number of physical hadron-ha&on 
cdision processes producing a Wt. No mixing and no bottom in the initial 
state. 

remains elusive at the Tevatron the signal and background question comes back again when LHC 

or SSC studies are made. For those accelerators also signal (1.6) and its background will have to 
be known. 

Therefore we shall extend in this paper the previous calculations to 1 = 6. Although the 

formalism is set up in such a way that both W and Z could be considered, we shall focus on the W 

case, since that seems to be the most relevant case in view of the above signals. 

The complexity of the process (1.1) rapidly increases with growing 1. This is illustrated in table 

1. In this table a typical parton combination is given and the number of subprocesses related to it 

using different flavour choices. Also the number of diagrams for the matrix element is listed. Let 
us take a specific case in order to indicate the meaning of the entries. 
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For the 1 = 4 case in reaction (1.4) one has the following incoming parton combinations related 

to the generic ulgg case: 

ud -+ W’gg, 
ug -+ W+dg, 

zg + w+ag, 

99 + W+cd. 

(1.7) 

(1.8) 

(l-9) 
(1.10) 

Since the incoming hadrons contain four flavours, the cases (1.7)-(1.10) represent the foUowing 
number of subprocesses: 4,4,4,2. Here we distinguish for example the ud incoming state from &. 

The number of subprocesses is not the number of times a parton cross section has to be evaluated. 

This number is generally lower amongst others because different flavours can possess the same cross 

sections. 

From the table it is clear that the 1 = 6 case is considerably more complex than the 1 = 5 case. 

Space limitations prevent us from listing explicitly analytic answers for helicity amplitudes a.s in 

the 1 = 5 case. Nevertheless we shall give a description of the various kinds of amplitudes, i.e. 2, 

4 and 6 quark matrix elements. The 2 quark matrix elements will be evaluated numerically with 

recursive techniques. The four quark matrix element calculation is similar to the 1 = 4 and 5 cases 

as far as the quark structure is concerned. Of course the additional gluon adds to the complexity. 

The 6 quark case occurs here for the first time and is a generalization of the 4 quark case. 

Besides a description of the calculation this paper also presents some numerical results for 

reaction (1.4), hereby extending the previous numbers [6] to the four jet case. The results for an 

increasing number of jets show a rather regular pattern, thus giving confidence in this complex 
evaluation. The results are for Tevatron, LHC and SSC situations. In a future paper we hope to 

present a more extensive phenomenological study for the Tevatron. 

The actual outline of the paper is as follows. Section 2, 3 and 4 describe the 2, 4 and 6 quark 

amplitudes. Section 5 presents numerical results whereas section 6 summarizes the conclusions. 

2 Matrix elements with one quark pair 

In this section we deal with the calculation of the matrix elements involving a qij pair, a vector 

boson and an arbitrary number of gluons. We choose for this case a different calculational technique 

than for the two and three quark pair cases. The reason is that when more gluons participate in a 

process, the number of diagrams increases rapidly. Therefore the calculation of helicity amplitudes 

by using Feynman diagrams becomes too complex, even when we use Weyl-van der Waerden spinor 

calculus. A technique recursive in the number of gluons has been introduced [7] for these situations. 

It pays off to use this technique when we have three or more gluons in a process, so for the one 

quark pair case we favour this approach. 
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After briefly summarizing those parts of the recursive calculation methods [i’] required for the 

vector boson processes we look at the production of a W and at some numerical implications. We 

will show that for the process under consideration both the matrix element and the sum over the 

parton processes can be systematically dealt with for any number of gluons. 

For the sake of presentation we consider the process with outgoing partons created from the 

vacnum 

0-V+q(Q;~)+~(P;j)+g(K,;a,)+...+g(K,;a,). (2.1) 

The momenta and the colour indices are explicitly given. It is not of importance that process (2.1) 

is not a physical process. Later on we will cross two momenta from the final to the initial state. 

The matrix element for process (2.1) is given by a vector current S,(Q; 1.. . n; P) contracted with 

the polarization vector VP of the boson. For the sake of clarity we frequently omit colour and 

momentum indices in $,, they are implicitly understood. In [l] process (2.1) is discussed in great 

detail. Here we only present the main elements of the method to obtain 2,. 

The vector boson couples to the quark line breaking the Feynman diagram into two parts, one 

spinor current with the q(Q) and gluons 1 through m and one spinor current with q(P) and the 
rest of the gluons, m + 1 through n. These two spinor currents can be decomposed in a colour base 

of fundamental representation matrices T” of the SU(N) co our gauge group. The spinor currents 1 

are given by 

-f(Q; 1 . . .m) = g”’ $z ,(F . . T”“)iJ(Q; 1.. . m) (2.2) 
m 

and 

j(m+l...n;P)=g”-m C (Tam+‘...Ta”)~jJ(m+l...n;P), (2.3) 
P(m+1...n) 

where the sum is over all gluon permutations. The quark currents J(Q; 1.. . m) and J(m+ 1.. . n; P) 
are calculated using recursion in the number of gluons (71. For the no gluon case they are: J(Q) = 

c(Q) and J(P) = u(P). Using eqs. (2.2) and (2.3) S,, can be written as 

$(Q; 1 . ..n.P)=ieg” C (T”...Tng)ijS,(Q;l...n;P) (2.4) 
P(l...TX) 

with 

S,(Q;l...n;P)= 2 J(Q;l...m)F,V”~~‘iJ(m+l...n;P). (2.5) 
?Bszo 

Eqs. (2.4) and (2.5) reflect the coupling of the vector boson at all possible positions on the quark 

line with the gluons randomly distributed over both sides. The vertex l’:fifs depends on the nature 

of the vector boson and on the quark flavours. Throughout this paper we set the KM matrix equal 

to unity. This has very little influence on the results (61. All the S,,‘s are conserved quantities, 
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sw(Qi 1 ...n;P)(Q+K~+...+K,+P)“=O. (2.6) 

They are also gauge invariant in the sense that replacing a gluon polarization vector J(i) by the 

momentum Ki gives zero. The matrix element is given by 

M(Q;l,Z,... ,n; P) = VP.?,. (2.7) 

The computation of the matrix element squared IV“s,I’ is done as follows. First determine all the 
S,‘s using eq. (2.5). The fact that we let the vector boson decay has two consequences. The first is 

that we have to include a propagator for it. Thus one has 

V’ = 
-igw 

s - M$ + iM”rv 
L 

“’ 

In this formula, s, MV and rv are the momentum squared, the mass and the width of the vector 

boson, respectively, and L, is a lepton current, which is given by 

L, = ieii(l,)I-, “%J(12). (2.9) 

Secondly the vector boson decays into two massless particles and therefore we only need to sum over 

the two polarization states which correspond to the +- and -+ spin states of the decay products. 

Finally the square IVpS,I’ contains a colour matrix which originates from the product of the colour 

parts. We work out those products with 

(T”)ij(T”)M = 2 [6,r6*j - 6ij6M/N] (2.10) 

resulting in a polynomial in N. This procedure has to be repeated for rdl possible helicity config- 

urations of the quarks, gluons and the decay products of the vector boson. The method sketched 

above is valid for any number of gluons. Only the colour matrix has to be determined separately 

for each value of 71. 

Specifying that the vector boson is a W leads to a reduction in the number of helicity amplitudes 

that has to be evaluated because the W only couples left-handedly. When implemented numerically 

the general recursive method can very well compete with analytical results as far as numerical 
evaluation speed is concerned. In table 2.we made a comparison between two programs, one based 

on the analytical results of [l] and one based on the numerical recursion method. One can see that 

there is not much difference in the CPU-times needed. Together with the fact that for n 2 3 the 

analytical results are very hard to obtain it shows that the recursive approach is the method to use. 

In the physical situation where we consider PP -+ V+ jets, two of the QCD particles in process 

(2.1) have to be crossed from the final to the initial state. There are four possible ways : 

q(P)dQ) -+ V + g(G) + . . . + g(W ?LLO (2.11) 

q(J’)g(Kl) + V + n(Q) + s(G) +. . . + g(K) ?-L>l (2.12) 

Q(Q)g(K,) -+ V + q(P) +s(&) + . . . +g(K) %X21 (2.13) 

g(K,)g(G) --+ V + q(Q) + -T(P) + s(h) + . . . + s(KJ n22 (2.14) 
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Nr. Gluons 1 W/Z old ) W/Z new 

0 ) 0.00226 1 0.00223 

Table 2. CPU-time in seconds of the W/Z matrix elements with a quark pair 
and n gluons. Old entry stands for the routines based on (11. New entry is 
the general method with recursion. Timing on a VAX 3500. 

In the case n 2 2 four different matrix elements have to be evaluated. The fact that for more final 

state particles the extra gluon always ends up in the final state of the four processes mentioned 
above enables us to write down a general algorithm for the sum over physical subprocesses. 

3 Matrix elements with two quark pairs 

Here we discuss the calculation of the tree level matrix elements for the creation of a vector boson, 

two quarks, two antiquarks and two gluons, followed by the decay of the vectorboson into a lepton 

pair: 

0 + Vq1@2qs~.g1g2, v --+ I&. (3.1) 

Again we get the matrix elements for physical processes that occur in collision experiments by 

crossing two particles to the initial state. In contrast to the previous section we use explicit Feynman 

diagrams which will be grouped in gauge invariant sets. Helkity amplitudes will eventually be 

obtained from them with help of Weyl-van der Waerden spinor calculus. 

The matrix element M is given by 

M = I”‘?,,,, (3.2) 

where V’ is given by eq. (2.8). From now on, we focus on the calculation of the four quark, two 

gluon coloured current ?,,. All quarks are assumed to be massless. 

For the (anti-)quarks we will use the symbol Qi, which stands for (Qi,A,i,q,fi), with Qi = 

momentum, X,; = helicity, e; = colour and ,fi = flavour. We denote the gluons by 1 and 2, which 

stand for (Ki, Xs;, ai), (; = 1,2), with Ki = momentum, hs; = helicity and ai = CO~OUI. 

The calculation of the current ?,. is in many ways similar to that of the qqqQ and q@q?jg currents 

presented in [I]. We will use several definitions, and also some results given there. 
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Fig. 1. The two basic diagrams for the four quark process. 

First, we write ?,, as the sum of four parts A,,: 

F,.;(QIQzQsQI; 12) = &(QIQ~QJQI; 12) - &(QsQsQ1Q,;12) 
- .&(QIQ.Q~Q~; 12) + -&(QsQIQIQz; 12). (3.3) 

AJQIQ~Q~Q,; 12) is the sum of all Feynman diagrams that can be constructed by attaching two 

gluons g1 anti g2 to the two basic diagrams in fig. 1. We will refer to the diagrams constructed using 

the left diagram as a-type diagrams and to the ones using the right diagram as b-type diagrams. 

By combining the colour matrices associated with the vertices of a particular diagram using 

eq. (2.10), we can write it as the product of a coiour factor and a colour independent factor. Doing 

this for all diagrams we find that the following factors occur: 

Y1(c,c2c3c*;a,%) = &,(T-T”‘)C,5% (3.4) 
-l2(clcmcr;alaz) = (T”‘).,,(T”‘).,.,. (3.5) 
Y3(flw3C4;w%) = (Ta’Ta2)c,c4&,C1 (3.6) 

Yr(clc3c3c4; ala,) = (3.7) 

7*(c1c*c3c.; a,a,) = -j$Ta’)““P)c,a (3-S) 

Ys(clc*c3c4; ala,) = -j$T”~T”%,.,6c,., (3.9) 

Yi+s(c1w3cr; wz) = yi(c1c2c3q;a~al) for i = 1,. . . ,6. (3.10) 

Splitting off the colour factors, and using the invariance of A, when g1 and gs are interchanged, we 

obtain: 

-&(QIQzQIQI; 12) = 

ieg'6"f4 c '&(cIw,c,; =I=~)B,+“(QIQ~QJQ,; 12). (3.11) 
P(l2) i=l 

The sum is over the two possible orders of the gluons. A common factor ieg’@* has also been 

extracted. 
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Before proceeding to describe the calculation of the functions I$,,“, we note that A,, is gauge 

invariant, i.e. it vanishes when a gluon polarization vector .I,, is replaced by its momentum K,,. 
Because the colour factors 7; are independent, this means that the B&” ‘s are also gauge invariant. 

Our strategy is to divide the Bf:” ’ s into as many gauge invariant pieces as possible and then to 

calculate all those pieces separately, choosing the most convenient gauge for the gluon polarization 

vectors in each piece. 

We will give a description of the Feynman graphs that contribute to the Bi,,‘s. They are now 

colourless diagrams. The meaning of the three and four gluon vertices is as follows: 

igVaIpap)(K,, Ka, Ka) = ig [(KI - Ka)a3ga’pa 
+( KS - KJ)a~gp“” + (Kz - K$=2gp’o’] . (3.12) 

Q3 

x 

ig2 [2g”l”‘g”‘Q’ _ gPIoIg~sPI _ g~IP*gP,P,]~ (3.13) 

a1 Q4 

These vertices are not symmetric under permutations of the gluons, so to have an unambiguous 
correspondence between the diagrams and the formulae, we adopt the convention that the gluons 

with labels (1,2,3) in eq. (3.12) must be arranged in ascending order when one goes around the 

diagram clockwise. Similarly, for the four gluon vertex, the gluons labeled (1,2,3,4) in (3.13) must 

be arranged clockwise around the diagram. 

Let us begin with B,,, Bs, and Bs,, since they are somewhat simpler than BI,, Bz,, and B+. 
We shall derive some expressions for them consisting of parts which we already know from 111 

and new quantities. For the latter we don’t give the explicit results but we indicate which type 
of diagrams contribute. Also the occurence of gauge invariant subsets is noticed for the reasons 

mentioned above. 

The diagrams for B,,, are obtained by attaching gr and gs to the quark line that connects Qs 

with Qr in diagram a or diagram b. Gluon 1 must be attached below gluon 2. In other words, if 

we follow the quark line from Qs up towards Qr, we should reach gi before we reach ga. BI, also 
contains the diagrams where g1 and gr are connected to each other by a three gluon vertex which 

is connected to the Q3 - Q, quark line. By adding all the diagrams we obtain: 

with 

S;fif’(Q~; Qd = J(QI)~;“‘~[@ + @ + Qa + & -I &I-‘-d(Qz) 
- J(Qd-r&h + (Q + Cn + & + &I-‘r~““J(Qd 

a 

(3.14) 

(3.15) 



and So(Q3; 12; Q,) as in eq. (2.5), but now with r:fify replaced by 7~. By inserting only the first 
term of eq. (3.15) in eq. (3.14) instead of the whole Szl”, we obtain a quantity we call &,. It is 

precisely the sum of all the a-type diagrams in B,,. Taking only the second term of eq. (3.15) we 

get Blyb, the sum of all the b-type diagrams. From the gauge invariance of So we infer that B,, 
and B,@ are both gauge invariant. 

When translated into Weyl-van der Waerden spinor language, eq. (3.14) and eq. (3.15) become: 

B{;ti(QTQ;Q3Q,; 12) = (~i)‘~v’f’fa,;ABS~BiVsCD(Q:Q;)SCD(Q3; l&Q,) 
(Qs + Q4 + KI + Kz)? 

B!:“(Q;Q:QsQGW = (A1 L 
’ v.flf~,~BSj;BCD(4;Q:)~CD(~3; 12; Q,) (6 +Q +K + K ) 

3 I 1 a2 

with 

%,(Q:Q;) = qli(Qz+Q3+Q1+K1+K,)CsQlo 
(Qz+Q3+Q,+K~+K2)Z 

_ qIC(Q1+Q3+Q,tKt+K,)riD418 
(QI+Q~-+Q,+K~+K~)~ 

and 

%,(Q;Q:) = -%,,(Q:Q;). 

The quantities L”-‘l’a and R"pflf~ are the coupling constants in 

yr.fz = LV’flfi7,( 9) + R~vf’f>7p(+ 

S’iB(Q3; 12; Q,) is defined by 

%(Q3;12;Qr) = (JZ)'U~~S~~(Q~;~~;Q,). 

Expressions for SiB(Q3; 12; Q,) are listed in [l]. 

(3.16) 

(3.17) 

(3.16) 

(3.19) 

(3.20) 

(3.21) 

The diagrams for Bg,, have 9, attached to the left quark line and CJ~ attached to the right quark 

line. Their sum can be expressed as B product in a way similar to B,,: 

B61:fYQlQ2Q3~I; 12) = 

1.y,‘,” 2 ,,m (91;l;Qz) (Q3 + ;Ot K3),S~(Qz;2;Qd (3.22) 
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Szflfz is the sum of six diagrams: 

S~flfa(Q1; 1; Qz) = 

+J(Ql; l)r;flf’[C]-‘~cJ(Qz) 
(3.23) 

+J(Ql)r,"""M + ~d-lfll)~~]-‘~J(Q,) 
+J(Ql)r,V.f’fa[l + Vd-‘raJ(1; Qs) 

-J(Ql; 1)rcJ.b t W,j-‘r;flfa.qcj,) 

+J(Q~)raPl-~p(l)[b + Jq~-1r;fif2J(Q~) 

-J(Q,)y,Lb]-l~,Y.f'f~~(l; Qz), (3.24) 

where the =bbr=~=tions a = QZ + 43 + Q, t Ka and b = Q1 t Q3 t Q, t Kz have been used. BE,, 
is the sum of two gauge invariant parts, B slro and Bsd, which consist of all the a-type and b-type 

diagrams, =sPecti&. This corresponds to separating the first three terms and the last three terms 
in =q. (3.23). Translating eq. (3.22) into spinor language using 

Sv~f1f2(Q~; 1; Q;) = ~~18~~DRV,““S~BCD(Q~; 1; Q;), 

Szfl”(Q;;l;Q;) = 

(3.25) 

& ~~BO,CDZY.‘i’rS~BCD(Q;; 1; Q:), (3.26) 

and 

WQ3;2; Q,) = &fSiB(Q3; 2; Q,) (3.27) 

we find 

B$"(Q:Q;Q,Q,;n) = (JZ)2R “I ‘Q;ABS~~~~(Q:.~.Q-)S~~(Q~;~; Q,) ' (Q + Q +'I; ) 

Bf;“(Q;Q:Q3Q,; 12) = (~)2zv~f1f~u+$e~~~~ ;+‘D(Qa; 2; Q,), 
3 , 

(3.26) 

(3.29) 

Expressions for SiB(Qs;2;Q,) can be found in [l]. SlBcD 
combination. Although eq. (3.23) 

must be calculated for each h&city 
contains six terms, the number of terms in SIBCD can be reduced 

to four by using an appropriate gauge. 

The next function, B s,,, is treated in the same way. The diagrams for Be,, have g1 and 91 both 
attached to the left quark line of diagram a or diagram b, with g1 nearest to Ql and CJ~ nearest to 

Q2 

Bi;f~(QIQ2Q3~4; 12) = 

;S;flfl(Q1; 12; Qs) (Q3yQ,)ssB(Q.; QI). 

Her= s~f1fa(Ql;12;Q~) is defined analogously to S~f~f~(Q&Qs) and S~f~f~(QI;Q1). It contains 

contributions from 18 ~agrams and it has to be calculated for every helicity combination. Once 

again, the a-type pat Be,. and the b-type part Bad are separately gauge invariant. 
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Fig. 2. Examples of diagrams for 191,. 

4 
i 

ti 
2 1 2 3 

Fig. 3. This diagram does not contribute to &,. 

The other B-functions, B,,, Bt, and B,,, will now be discussed. The diagrams for B,, are 
obtained by adding g1 and g1 on to the bottom of diagram a or diagram b, i.e. tbey must be 

connected to the diagram somewhere along the line which starts at Qs and goes to Qz. Someone 

travelling along that line should meet g1 before he meets gs. There are 25 diagrams of this kind. 

Some examples are shown in fig. 2. The quarks and gluons, starting from QI and going clockwise, 
are arranged in the order QIQIQs12Q1. Note that the colour labels in the colour factor (3.4) occur 

in the same order, i.e. cIc4csoI~scs (reading the labels of a string (T’Tb.. . ‘I”)., in the order 

zab.. ley). On the other hand the diagram in fig. 3 has g1 and gs in the wrong order and should 

not be considered for Bl,. 

The connection between diagrams and their colour factors is a general feature of all colour 

structures. For B1, there are 28 diagrams. They have g1 attached to the top of the diagram, 

somewhere between Q1 and Q+, and gs attached to the bottom, like for example fig. 4. The 

diagrams for Ba,, have both g1 and gs attached on the top, with g1 to the left of gs. The number 
of diagrams is again 25 and there is, in fact, a one to one correspondence between the diagrams of 

B1, and those of Bq,. This is an instance of a more general symmetry of A,, which follows from 

CP invariance, that we will discuss later on. It can be exploited to derive BJ,, from BI,, once the 

latter has been calculated. 
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Simply separating the a-type and b-type contributions, as we did with B,,, Bs,, and Bs,,, does 

not yield gauge invariant parts of B1,, Bzp and Bs,. This is due to diagrams like eg. fig. 4, which 

have one or more gluons attached to the internal gluon of diagram a or diagram b. When we take 

diagrams like that and replace J,, by K,, we do not get zero unless we take the a-type and the b-type 

diagrams all together. Bowever, we can find gauge invariant parts in a slighty more complicated 

way. For this, we first take a look at the expression for diagram a: 

;J(Q$y~'~ [ch + G + ~I~‘Y.J(Q~(~,~~,~~ J(Q~)Y~J(Q,). 

It contains a yp on the left quark line and a y,g on the right quark line, connected by the metric 

tensor CD. All the diagrams for B,,, Bsp and Bs, contain this factor, but in diagrams where gluons 

are attached to the internal gluon of diagram a or diagram b, there is a more complicated tensor 

in between y- and yp. 

Fig. 4. A contribution to Bs,. 

For example in fig. 4 it is: 

J(l)~Va”*(--(Q3 + Q, + KI + Kz), KI, Qs t Q, + Ks) 

‘%xvxpp(-(Q, + Q, + Ka),Qs + Q,, K~)5(2)~. (3.32) 

When we substitute eq. (3.12) in eq. (3.32) and contract alI the dummy indices we find, among 

many other terms, one that is proportional to g -0. This happens in all the other diagrams as well. 

The quantity containing all contributions to B1, that are proportional to gap, is gauge invariant. 

Let us call it “Blr(gPB)” for the moment. Of course, the rest of Bl,,, “Bl,(no gad)“, is also gauge 
invariant. .Within Bl,(gP@) we can still separate the a-type and the b-type contributions, but in 
Bl,(no gaB) we cannot. So, our final decomposition of Bl,, is: 

B I,, = Bl, + B,,,b + BI, with 

B l(m = sum of a-type contributions proportional to gaB, 

B ld = sum of b-type contributions proportional to g@, 

B IF = everything else. (3.33) 

The quantities Bs,, and Bsl. are decomposed in exactly the same way. 

To calculate the currents Bi,,, two methods are used. The first is to take a gauge invariant quan- 

tity and use Weyl-van der Waerden formalism for an immediate evaluation, choosing gauge spinors 
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for the gluons that make this as easy as possible. When we use the second method, we postpone 

the specification of the helicities and the introduction of Weyl-van der Waerden spinors. First we 
combine terms so that we end up with formulae that no longer contain any gluon polarization vet- 

tors explicitly, but only implicitly through the abelian field strenghths FJ”’ = K*.l' - K'Jr. After 
that, we proceed in the normal way, expressing everything in terms of spinors, except that this time 

there is no need to choose gauge spinors, since P” is manifestly gauge invariant. Sometimes, it is 

convenient to use a combination of the two methods. 

To test the results we performed several numerical checks, which are based on the fob&g 
properties of the B-functions. 

The first is current conservation: 

(QltQ3+Q3tQ,+K*tK1)PBi~=O. (3.34) 

Then there is a set of relationships that can be proved using charge conjugation invariance. 

B;:“(Q,QaQsQ,; 1’4 = -@,tf:“(QzQ1Q,Q~;21) 
B::fi(Q1QaQ3Q,;12) = -i,f:f’(QzQ~Q,Q3;21) 
B!;“(Q~QzQ~Q,; 12) = -~~f1(Q,Q,Q,Q,;21) 
Bf:fi(Q1Q2Q3Q4; 12) = -ikf1(~1~1~4~3; 14 

B~!;“(QIQzQ~QI; 12) = -~,‘:“(QsQlQ,Q3;21) (3.35) 

The wiggle above the B-functions on the right hand side means that they must be calculated with 

the vector boson vertex (3.20) replaced by 

pyf2 = p’flf’y,( 1 ;ys) k p’“yp(+). (3.36) 

In certain regions of phase space the B-functions diverge because they contain diagrams with 

denominators that vanish. This happens when the energy of one of the gluons goes to zero, and 
also, because we are neglecting quark masses, when particles are collinear. In these limits, OUT tree 

level calculation is certainly not a good approximation to the exact S-matrix element. Neverthe- 

less, it is useful to evaluate the B-functions numerically in the soft and collinear limits, because 

asymptotically, they can be related to currents B, and S, that have been calculated and checked 

before [ 11. 

The soft limits that were tested are the limit when 91 becomes soft: 

Bf;“(Q1Q~Q3Q,;m) + Sq,x,K,Bf~“(QlQ1Q3Q,;g1), (3.37) 

B&“(QlQzQsQ,; 9191) - s,,,,,Bf:“(QlQ,Q,Q,;gl), (3.36) 

Bf;” (QlQsQsQ,; imz) - S~,~~~B~:lr(QlQ~Q3Q,ig~)r (3.39) 

Bi;fa(Q,QaQzQawd * S4,~LK,B~“(Q1Q3Q3Q,;g1), (3.40) 

B,‘:“(Q1QsQ3Qa;gm) + Sq,K,9,B~‘~(QlQ1Q3Q,;g1), (3.41) 

B&f2(QlQsQsQ,;gm) - Sq,~K1B!:‘~(QlQZQ3Q,;g1); (3.42) 
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the limit when g2 becomes soft: 

Bf:"(Q~QzQsQ~;m) -+ s,,~,,,B::fi(Q,Q,Q,Q,;gl), 
B$“(Q1QzQsQ,; sw) + SQs~~1B~~“(Q1Q~Q3Q,;g1), 
Bl;fV21Q1Q3~I; g1g2) -+ SK,KlP,B~~f~(Q1Q1Q3QI;g1), 
B!:fi(Q,QzQaQ,;sm) --t SK,~~,B~~“(QlQlQ3Q,;gl)r 
B,‘:“(Q~Q~Q~Q.;gd ---t s,,~*,B!:“(Q,IQ?QgQ,;gl), 
B&fz(QIQaQzQ,; gm) --+ S~,~Q.B~:~‘(Q~Q~Q~QI;~~); 

and the limit when g1 and g1 both become soft: 

Bf:li(QlQzQaQam) ---t SQ,~~,B~~~‘(QIQ~Q~Q,), 
BkfYQxQ~QzQr;m) + ~Q,,,~,,,,,B~“(Q~Q*Q~QI), 
Bi,tf’(Q~QaQsQ~;gm) -+ s,,~,,B~fa(Q1Q1Q3Qr), 
Bf:“(QxQzQaQ,;gm) ---t ~,,,,,,,B~“(Q~Q~Q~QI), 
Bs:“(QlQzQsQ,;gm) --t SP~~~,SQ,~~,B~~~(Q~Q~Q~QI), 
Br&f2(QxQaQsQ,;gm) --) ~,,,,K,~,B~‘~(Q,Q~Q~Q,). 

The soft factors are given by [a]: 

S 
Q.F.P 

4KP= Q.KK.p 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.46) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

.%K1K,P = 
Q. Fl. F,.P Q . FI . Fa . Q 

Q.K~K,.K,K~.P-Q.K~KI.K~(K,+K,).Q 
P.F,.F2.P - 

P.(K> + Kz)KI .KsKg .P' 
(3.56) 

The following collinear limit was tested: when QJ -a zK, Qb -+ (1 - z)K with K an arbitrary 
lightlike momentum and 0 < z c 1: 

B{:" 4 ; & h~(&b, )$!‘“(QI; KX, L2; Q4 (3.57) 

Bp -t ~A~lhr(X,X,)S~‘y(Q1;1,KX,2;Q1) (3.56) 

B&j' -+ ~A~lhr(X,,Xp,)St”~(Qlil,2,K~;Q1) (3.59) 

B&j2 + 0 

B&' -t 0 

@;‘a -.a ~A~~h*(X,X~,)15,‘1’~(Q,;KX,1,2;Q~) 

+ S,th(Q~;1,Kk2;Qa)+ S;h(Q~;1,2,KX;Qa)) 
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The collinearity factors can be found in [7]. 

As a find point of this section we discuss the matrix element squared. To do the colour sum- 

mation, we write 

ri; = ~ 7iAi, 
i=l 

with,fori=1,...,6: 

(3.63) 

7; = ~;(CIC~C~C~; ala2) as in eqs. (3.4)-(3.9) (3.64) 

and 

Ai, = ieg’bh’~B,!:“(Q1Q2Q3Q,; 12). (3.65) 

For i = 7 , . . . ,48, 7; and Ai, are given by: 

7i+S = 7i(al ++ %)v ‘Ai+.g=Aip(g1++gz) i=1,...,6 

7i+l2 = -7i(Cl ++ C3), &+IW = A+( Q1 * Qs) i=l ,...,12 

Tit24 = 7i(cl ++ CJ>CZ ++ ~a), A+za, = .&,(QI ++ Qa,Qz - Q,) i = 1,. , lz 
7it36 = -7i(CZ ++ C4)j Ai+wp = A,(Qz ++ Q,) i=l,...,lZ. 

(3.66) 

Using this notation, the colour summed matrix element squared can be written us: 

1.9 18 
C lM[~’ = CC c<j(V“A;p)‘(V”Aj,) (3.67) 

dour, *=, ]=I 

with 

Gj = c 7~(C1C1CJClalal)7j(ClC1C3Yala*). (3.68) 
CIC2~S~~.I~Z 

The matrix C;j can be expressed as a rational function of N using eq. (2.10). For completeness it is 

given explicitly in appendix Appendix A. Then eq. (3.67) must be summed over all possible helicity 

combinations. 

4 Matrix elements with three quark pairs 

The matrix element for subprocesses involving six quarks and a vector boson, which decays into a 

lepton pair, is given by: 
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M = V”ip, 
(4.1) 

where i’, is the six quark current. Again all the quarks and antiquarks are outgoing partides. We 

denote the quarks by ql, q3 and q5 and the antiquarks by q2, & and qe. Each of these particles has 

a momentum Q;, a helicity Ai, a colour c and a flavour fi. 
A. 

V,, is the sum of nine basic Feynman diagrams and all those which arise by permuting the quarks 
and the antiquarks. We write 

li,( 123456) = P[,Js~,~~rs)(-l)p(-l)pl {;+, + %I + 6 + G}. (4.2) 

We sum over all quark permutations P and antiquark permutations P’. The quantities CL;,, represent 

the following diagrams: 

4 

1 

7&= 

1----:I 

3 

P 

2 6 

5 

4 

1 

-I-- 

3 

+ 

2 6 

5 

5 4 3 2 

7is* = 

6 i 6 1 

1 4 3 6 1 4 3 6 

t,, + 

2 5 2 5 

5 2 1 4 5 2 1 4 

riL, = P 
- + tr. t-, 

6 3 6 3 
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(4.3) 

(4.4) 

(4.5) 



5 2 1 4 

+ (4.6) 

6 3 

The quantity CL>,, obtains a factor of ! because the diagrams of GzI,, do not change when (3 H 5) 

and (4 tt 6) are interchanged at the same time. This means that they occur twice in the sum over 

all the permutations. Extracting some overall factors and the colour factors, we obt&n: 

%,(123456) = fieg’ {s,,,,6,,,6.,.,ml,(123456) (4.7) 

+6,,.,6,,,,6,,.,m,,(125634)} 

riLz,,( 123456) r= fieg* SC,., 6,,., 6,,, 
I 

- ~6c,c,6c,,s,,c, 

-‘S 6 6 N c,c, c,c, cl% i &&,.,s,,) mz,(123456) 

and similar expressions for &,, and ti,,,. Substituting them into the formula for fi,, gives: 

P(136) 

(4.6) 

(4.9) 

where &,,, &, and B+ are linear combinations of ml,,, mgP, m3,, and mlu with arguments in 

various different orders. One now has to calculate the mi,,‘s which will be expressed in smaller 

objects like S,(Ql; Q1). 

mI,( 123456) = 6’z’a 6f8’a 
So”’ (QI; Qd %(Qs; Q,) S,(Qs; Qs) 

(Q3 + Q.)‘(Qs + Qs)‘(Qs + Q, + Qs + Qs)* 

xv’?-(Qx -i Q. + Qs + Qs), Q3 + Q,, Qs + Qs). 

For ma,, msP and m,,, we need some additional building blocks. 

4 3 

%@(Qa; Q,) = ?e./- t,, a 

(576) 

4 3 

P(Q3i Q,) = L t,, a 

(576) 

(4.11) 

(4.12) 
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2 1 2 1 

T*BVflf~(Q1; Q~) = d 
P 

t,, a 
I# 

(576) (374) (576) (3Y4) 

2 

+ PJ -q& 

(5%) (3Y4) 

or equivaiently, 

Ti=@(Qzi Q.) = J(Q$f=[@ + Q + a]-‘+J(Q,) 

G@(Qs; Qd = -J(Qs)r”@ + (ps + @I]-‘~~J(Q,) 

T$(Q,; Qa) = J(Q,)r;‘Lf2 [~+++++++~l-‘7=[~+$+$]-‘7’J(Q,) 

- ~(Q~)7°(~+~+~]-‘~~f~f[~+$++]-‘7S~(Q~) 

+ ~(Q~)~P[~++++]-17”[~+(B+~+(pj+~]-’r~’~’~J(Q,). 

ma, = 
~faf’~f~fss~f1f2(Q,; Q&@(Qz; Qr)Sa(Q~;Qs) 

(Qs + Qs)‘(Qa + Q, + Qs t Qs)’ 

(4.13) 

(4.14) 

ma@ = 
~f’f4~f~fa~~(Q~;Qs)T~8(Q3;Q,)S~‘~f~(Ql;Q1) 

(Qs + Qs)'(Qx + Q, + Qs t Qsx)" 
(4.15) 

m,, = 6f45f*faSdQ3; Q.)T.$(QI; Qz)Sp(Qs; Qs) 
(QJ + Q.Y(Qr- + Qs)l 

(4.16) 

NOW we use use Weyl-van der Waerden spinors to calculate the m;,,‘s for the helicity combination 

(~I~~~~X,XSX~) = (t - + - -t-). Once they are known, the mi~‘s for other helicities can easily be 
derived. This is done as follows. First note some properties of the currents TFB, TTB and S,: 

S4QJa; QJ,) = &(QJ,; QA) 
T,“B(QJs; QA) = -T18”(Q,X,; Q&b). 

From these properties the following relations can be derived. 

ml,(XJ, - -t&X6) = m~,(Lb t --A&, Q3 +, Q,) 
~l,(~lXAX4 - +) = ~I,(LWJ, + -, Qs f-t Qs) 

(4.17) 

18 



mdhb - +Ms) = -m3,(M2 t -X&Q3 +-+ Q,) 

~zrr(h-bX3X* - +) = ~~,(hb~J, t -, Qs ++ Qs) 

m,(~,~~ - +kb) = -mzg(hb t -X,X,, Q3 ++ Q,) 

77bp(LbX3X* - +) = mw(bW3~4 + -,Qs * Qe) 
m*,(M2 - +XJe) = m,,(Mz t -Lb, Q3 ++ Q,) 
~4jA(xIx1xsx4 - +) = ~4,(~JJ3~4 + ->Qs * 4s) (4.18) 

TO get the helicity combinations with (X,X,) = (-+), we use complex conjugation. 

%4(-,+,~3,X4,Xs,XB) = (4.19) 

[m+(+, -, -A,, -A,, -A,, -A,,P” + L”Jq* 

These rules are sufficient to obtain aU other helicity amplitudes. 

In order to square the matrix element one introduces an amplitude X(P) depending on a specific 

permutation P of the quarks. 

M = Vu& = jieg’ c (-1)pX(P)6~p(,)s.6cpo)c~6~p(.)c, 
P(135) 

(4.20) 

with 

X(P) = Vp (BI,(P(1)2P(3)4P(5)6) (4.21) 

+$B,,(P(l)zP(3)4P(5)6) + ~B,;(P(l)~P(3)4p(5)6)) 

The six quark orderings (135), (153), (351), (315), (513) and (531) are obtained by permutations 
P; (i = 1,. ,6) from the ordering (135). S umming over the colours leads to a 6 x 6 colour matrix 

CPPP. 

.,&--- IMl’ = ($,‘T ~dV’)‘x(p’) (4.22) 

with 

cpps = 

’ N3 -J’,‘= N -Ng N -Na 
-Na N3 -N2 N -N= N 

N -Nz ,,T3 -N1 N -N= 
-N= N -N= N= -N= N 

N -N2 N -N= N3 -N= 
, -Na N -N= N -N’ N3 

(4.23) 

Of course one still has to sum over all the helicities in eq. (4.22). 

When one restricts the calculations to W production a number of simplifications occur, both in 

the four and in the six quark cases. Since Rq’lh = 0, aU h e ~1 Ii ‘t y amplitudes with (A,, , A,) = (+-) 
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vanish. Knowing the quark flavours, the Kronecker delta in eq. (3.11) reduces the number of quark 
permutations that contribute to M. 

In the four quark case at least two quarks must have the same flavour. By rearranging the 

particles we label them as q3~ and q,. Then q1 and & must have different flavours. So we have 

fl # fs, f3 = f4. This leaves three possible situations. 

1). fi # fz, fa # fs, eg. U&E. In this case, no quark permutations are allowed: 

~JQIQsQzQ.; 12) = &(QIQzQJQ,; 12). (4.24) 

2). fi = fs = fd # fi, eg. u&ii. Now q1 and q3 are identical particles, so 

+,JQIQzQ~Q.; 12) = &(QIQ~Q~Q.; 12) - &(Q~Q~QIQ.; 12). 

3). f~ # fs = f3 = f4, eg. u&id. Here 

(4.25) 

$.(QIQzQ~Q.; 12) = &(QIQsQsQ.; 12) - -&.(QIQ.Q~Qz; 14. (4.26) 

Our computer program produces three different IM12’s, one for each type of flavour combination. 

The (MI’ for case 2) does not change when q1 ct qs. In case 3), it does not change when q2 ++ q,. 

In all three cases (M 1’ is invariant under g1 t-1 gl. These symmetries were checked numerically. 

In the six quark case there are seven types of flavour combinations. In all seven combinations 

w= h=v= f~ # fa, f3 = f4 and fs = fs. 

1). fi, fs, fs, fs all different, eg. u&bL 

2). j3 = f5, eg. u&c?. 

3). fi = f3, eg. u&iic~. 

4). f~ = f6, eg. ukdd. 

5). f~ = f~, f2 = f~, eg. uhidd. 

6). ‘f~ = f3 = fs eg. u&ii.uu. 

7). f~ = f3 = f~ eg. &did& 

Many symmetries exist for these cases. Like in the four quark case we have checked them 
numericdly. 

5 Numerical results 

In this section we present cross sections for the production of 1 Y+(Z, 3,4) jets for Fermilab, LHC 
and SSC energies. Moreover we compare this cross section with the top pair production cross section 

with the subsequent decay of the top pair tf -t W+W- b6 -+ 1 Y + (2,3,4) jets As mentioned 

in the introduction this is one of the important processes in which the top quark can be found. 
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fi PV) 
Strut. Func. 

QCD scale 

ARmn(j, j) 
Etmin(l)(GeV) 

Emin( mis)( GeV) 

Int”yl)i 

ARmm(j, 1) 

Collider 

1 

r 

FNAL LHC ssc 

1.8 16 40 
MRSEB MRSEB MRSEB 

Mw Mw Jfw 

15 50 50 

2.0 3.0 3.0 

* 0.4 0.4 

20 50 50 

20 50 50 

1.0 3.0 3.0 

0.0 0.4 0.4 
J 

Table 3. Structure functions, QCD scale and cuts used for each collider 
throughout this section. (* means defined in text.) 

number of jets 1.2 quarks 4 quarks 6 quarks total 

0 745 - 745 

Table 4. The PP - W + jets cross section (in picobarn) for Fermilab 
(AR(j, j) > 0.7) divided in subprocesses depending on the number of quarks 
in the process. 

Therefore the comparison between the signal and the background is crucial for the ability to find 

the top quark in the lepton plus jets decay channel. In a later paper we will study the possibility 

of finding the top quark in this decay mode in greater detail. For the super colliders both the top 

signal and the W production are a background to the Higgs search in this decay channel. 

R, 1 AR(j, j) > 0.4 AR(j, j) > 0.7 AR(j, j) > 1.4 

(1) I (0.17) (0.17) (0.17) 

2 0.22 0.20 0.16 
3 0.22 0.18 0.11 
4 0.22 0.15 0.07 

Table 5. The ratio &, for several AR(j, j) cuts at Fermilab energies. 
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mtop (GeV) o(lv + 2 jets) o(lv + 3 jets) cr(Iv + 4 jets 

90 5.47 2.61 0.23 
100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 
. . 

2.74 3.97 1.33 

0.998 2.60 1.70 

0.445 1.61 1.44 
0.235 1.02 1.10 

0.135 0.669 0.818 
0.084 0.452 0.601 
0.053 0.314 0.445 
0.036 0.222 0.330 
0.024 0.159 0.245 
0.017 0.115 0.183 

0.012 0.085 0.162 
26.0 4.8 0.71 
0.27 0.087 0.022 

Table 6. The PP --t tK -t Iv + (2,3,4) jet cross sections (in picobam) for 
various top masses (in GeV) and the PP -) W + jets background with and 
without b-tagging at Fermilab energies (AR(j, j) > 0.7). 

The results also serve as a check of the Monte Carlo program, which uses the matrix elements 

of this paper. Of course the tests described in the previous sections were carried out, i.e. soft and 

collinear behaviour, current conservation, charge conjugation and equal quark flavour symmetries. 
The ratio 

R, = u( W + n jets)/u( 1%’ + (n -1) jets) (5.1) 

offers a good possibility for a final check on the program. 

Before presenting and discussing the results we specify the input needed for the numerical 

calculations. The cuts and parameters used are given in table 3. The minimal transverse energy 

.@a(j), ma&mm pseudorapidity jvmsx (j)l and the minimum separation ARrmn(j, j) are the 
cuts on the outgoing partons. The separation AR is defined as 

AR = dm, (5.2) 

where A+ is the difference in the azimuthal angle and A7 the difference in rapidity between two 

partons. In terms of a *, 7 lego-plot? AR is the distance between two partons. The lepton cuts are 
the minimum transverse energy E, rmn I and the maximum pseudorapidity l~““(l)i. Throughout ( ) 

the paper the lepton 1 is the charged lepton and we consider only the e* signal. The cross sections 

are the sum of the W+ and W- cross sections. The minimal required missing energy is Efin(mis). 
Finally a minimal separation of lepton and parton of ARmin(j, 1) is imposed. 
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mtop (GeV) u(lv+2 jets) u(lv+3jets) u(lv+4jets) 

100 37.9 7.9 0.48 

I. 
L 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 
. 

34.0 10.7 1.27 
29.8 11.4 1.72 
25.4 11.6 2.10 
21.5 11.4 2.28 
18.3 11.2 2.38 
15.7 10.7 2.40 
13.4 10.2 2.41 
11.1 9.82 2.48 
9.22 9.38 2.49 

7.51 8.81 2.51 

background 52 24 6.7 

with tagging 0.087 0.24 0.17 I 
Table 7. The PP -+ tt + Iv + (2,3,4) jet cross sections (in picobarn) for 
various top masses (in GeV) and the PP + W + jets background eith and 
without b-tagging at LHC energies 

The used parton distributions are the MRSEB structure functions [9] (AT = 200 MeV) with 

the QCD scale Q = Mw. Since we are mainly interested in a global study o some cross sections v 

we did not look at detailed issues like the scale and structure function dependence of the results. 

We postpone this to a later paper. The Monte Carlo of ref. [lo] is used to generate the top signal 

cross sections with the QCD scale chosen to be equal to the top mass. In table 4 we use cuts which 

more or less typify the CDF-detector. 

Turning to the results, we first discuss the relative importance of various subprocesses for the 

measurements at the Tevatron. Table 4 gives the total cross section as well as the separate con- 

tributions from the subprocesses according to the number of quarks involved in the process. We 

notice that processes with four quarks become more and more important compared to the two quark 

subprocesses for an increasing number of jets. For 2, 3 and 4 jets respectively 17%, 30% and 42% 

of the total cross section comes from the four quark subprocesses. This implies that the fraction of 

the jets which are quark jets increases with an increasing number of jets. Note further that the six 

quark subprocess (i.e. 49 -+ 9991~ W) is negligible, the contribution to the total cross section is only 

1.8%. 

Next we discuss the behaviour of R,, as defined in eq. (5.1). As was conjectured in ref. [ll] 

and later verified for up to 3 jets [6], the ratio R,, is approximately constant for reasonable cuts. 

For loose CDF cuts (see table 3, with AR(j, j) > 0.7) this ratio is roughly l/5. Of course there is 

a limit on the validity of this rule of thumb. This shows up easily when considering the available 

phase space for the extra jet in the ratio. With an increasing number of jets, the available phase 

space for adding a jet quickly decreases. Sihce it eventually becomes impossible to add another 
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mtop (GeY 
100 

110 

120 

130 

140 

150 

160 

170’ 

180 

190 

r 
~(1 v + 2 jets) o(Z v + 3 jets) u(I v + 4 jets) 

179 39.6 2.3 

165 

146 

127 

112 
97.6 

84.8 

74.2 

63.6 

54.3 

45.9 

54.4 

59.6 

62.2 
62.9 

62.4 

61.6 

59.4 

58.0 

55.9 

53.2 

6.5 

9.4 

11.9 

13.2 

14.0 

14.6 

15.1 

15.5 

15.6 

15.8 200 

background 177 107 46 

Rith tagging 0.21 1.0 1.0 

Table 8. The PP -+ tt + Iv + (2,3,4) jet cross sections (in picobam) for 
various top masses (in GeV) and the PP -+ W + jets background with and 
without b-tagging at SSC energies 

jet, this means that the constant ratio rule of thumb must break down for a high number of jets. 

However if we make the jet “small” (e.g. a small jet cone) the breakdown of the constant ratio rule 

is postponed. This is demonstrated in table 5. Note that the ratio RI is not a relevant quantity 

in this comparison, since in tree level approximation it is independent of AR(j, j). It is only listed 

for completeness. We see in table 5 that for ARmin ’ (J, j) = 0.4 the rfltio is a constant within the 

numerical accuracy. As expected we see that with increasing ARmm(j, j) this is no longer the 

case and the deviation from constant ratio increases with increasing ARmin(j, j). The fact that 

R, = Rs = Rg for sufficiently small ARmin . (J, j) is a good test on the absolute normalization of the 
Monte Carlo program. 

It is of interest to compare the cross section PP + 1 Y + (2,3,4) jets with top pair production 
where each top quark subsequently decays in a b quark and a W, PP -+ &W+W-. One of the 

possible decay channels is that one W decays hadronicalIy into 2 jets and the other one leptonically 

to give a charged lepton and a (anti)neutrino. The Et of the bottom quarks is strongly dependent 
on the top mass. If the top miss is close to the W mass the bottom quarks will have, in most of 

the events, a low transverse energy and will not pass the threshold for recognisable jets [12]. When 

the top mass increases it becomes more likely that one or both of the bottom quarks will pass the 
Etmin(j) threshold and d eve ops 1 into a jet. For the Tevatron this can be clearly seen in table 6. 

For mtop = 90 GeV most of the events are with two jets, while the fraction of lepton plus four jet 

events is the smallest. This in contrast with a heavier top mass. From a mass of 140 GeV onward 
the situation is reversed and most of the events are with four accompanying jets. The important 

issue is the relative size of the background compared to the top signal. The top search in the lepton 
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plus two jet channel were extensively studied in refs. [12]. Since the top mass is above 89 GeV 

[13] the background is too large to observe the top quark in the two jet mode. The top search in 

the three jet plus lepton decay was studied in refs. [14]. As can seen from table 6 the background 

remains a problem, though compared to the two jet plus lepton mode the signal to background ratio 

is improved considerably. For the four jet plus lepton mode the signal is larger than the background 

over a large mass range of the top. This offers a good possibility of finding the top quark in the four 

jet plus lepton mode. One disadvantage is that the cross sections are of the order 1 picobarn. With 

an estimated luminosity of 25 pb-’ from the next Tevatron run we can expect around 18 events 

from the background, while the top pair signal could give as many as 42 additional events (for a 

top mass around 110 GeV). 

Also included in table 6 is the background when we demand a b6 quark pair in the final state. 

That is it is the cross section for PP -+ W + (2, 3, 4) jets where two of the jets are tagged as b 
jets. No efficiency for the tagging is folded in. This 6 tagging mrght become possible at the coming 

measurement of the CDF collaboration at Fermilab. This opens the possibility for reducing the 

backgroundqto the topsearch in the lepton + jets channel considerably. In fact the top signal has 

always two b quarks in the final state though they will not always develop into jets as was already 
explained and is clearly demonstrated in table 6. Therefore the effect of tagging on the top signal 

and the W background depends on the number of jets in the final state. 

For the final state Iv+2 jets the top signal in this lowest order approximation disappears because 

both the b quark as the 6 quark are soft. The W background is reduced by a factor 100. Of course 

we have to include the tagging efficiency e. If we demand to see at least one b tagged jet the 

efficiency is much higher and is given by eb = 2c(l- s) + es. It is worthwile to notice that the Iv + 2 

jets can be used in an experiment to test the validity of the tree level calculation with b tagging, 

since there is no “top contamination“ in this channel. 

In the Iv + 3 jet final state the top signal contributes, though there is only one b jet in the final 

state. The background is reduced by a factor of 50. This means that the background is negligible 

over a wide range of top masses. A disadvantage is that there is only one b jet in the signal and 

two b jets in the background which are affected differently by the efficiency. 

This latter phenomenon does not happen in the Iv +4 jets final state. From table 6 we see that 

the cross section is reduced by a factor of 30. This means that the W background is no problem in 

the top search. As a simple example assume a top mass of 120 GeV, a tagging efficiency es = 20% 

and a luminosity of 25 pb-‘. Then the expected number of top events is approximately 7 events 
and 0.1 background events. This means that seeing Iv + 4 jet events with at least one tagged b is 
almost certainly a top event. With only a handful of events it is then possible to determine the top 

mass by reconstructing the events in a consistent manner. 

For completeness we also include some results on the processes PP + W +jets and PP -a tf -S 
Iv + jets at future super collider energies. The results in tables 7 and 8 give an indication of what 

to expect. The SSC cross section is roughly a factor 3-5 larger than the LHC cross section for the 

same cuts. Note further that the ratio R,, is large for the super colliders (e.g. for the SSC collider 

R1 is as high as 0.82). This makes the validity of the treelevel calculation questionable. To get a 
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more reliable estimate for the cross section (and a R,, of order 0.2) one should impose tighter cuts 

on the jets, especially on the Efni=(j). We don’t p ursue this question here, since we consider the 
results of tables 7 and 8 as a mere illustration of the presented calculations. 

6 Summary and conclusions 

In this paper it is shown how the complexity of the production of a vector boson and jets increases 

with the number of jets. In view of the particular relevance of the four jet cross section the exact 

calculation has here been carried out. For the one quark pair subprocesses recursive techniques 
can ,handle the large number of diagrams. For the two quark pairs and three quark pairs explicit 

Feynman diagram calculations can be carried out when an optimal use is made of the freedom in 

choice of polarization vectors for the gluons in gauge invariant subamplitudes. As in our previous 

calculations Weyl-van der Waerden spinor calculus is the tool to obtain the helicity amplitudes. 

With these matrix elements inserted in a Monte Carlo program one can have a first global look 
at some physics results. The program and its matrix elements satisfy the consistency checks we 

can impose. The signal to background ratios for top search in the W and four jets channel look 

promising for the Tevatron and will be further investigated in a separate paper& Also results for 

LHC and SSC energies are given. The~cuts on the jets should here become more tight than at lower 

energies in order to get more reliable predictions from tree diagram calculations. 

Appendix A The colour matrix for the four quark processes 

The 48 x 48 colour matrix c defined in (3.68) can be written as 

CA cw cc CD 

where 

cA=(r: 5:)-=(:: :$cc=(~ ;),cD=(;; z), 
and 

c.1 = 

’ 61 0 62 -6, 6, -6, 
0 61 0 6, -6, -6, 

62 0 6, -6, -6, -6, 
-64 63 -6, 6, 0 63 

6s -64 -6, 0 6, 0 
,-64 -6, -64 6s 0 6, 

,c1= 

‘-6s 0 6s 63 -6, 6, 

0 62 0 -6, -6, 6s 

62 0 -6~ 6, 6, 6s 

6s -6, 6s -6, 0 6s 

-6, -6, 6, 0 6s 0 

, 63 6s 63 6s 0 -6, 
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CQ= 

Cg= 

'-6, 6, -65 65 0 68) 
6, -6~3 -66 0 65 0 

-46 
c,= 

-6, -65 66 0 66 
65 0 Ss -67 Ss -6, '='= 
0 6s 0 6, -6, -67 

, 60 0 66 -6, -6, -6,) 

The constants 61. . .6s me given by 

f-65 -65 -65 66 0 65 

-65 -6s 6, 0 66 0 

-6s 68 -6s 6s 0 6, 

63 0 65 -67 -67 -6, 
0 6s 0 -6, -6, 6s 

, 65 0 6s -6, 6, -67 

’ 62 0 6, -6, -6, -6, 
0 62 0 -6, -6, 6, 

61 0 6, -6, 63 -64 
-6, -6, -6, 6, 0 6, 
-6, -6, 6, 0 6, 0 

,-6, 6, -6, 6, 0 6, 

I c4 = 

’ 6.3 6, 6, 6.9 0 -6s 
6s -6s -65 0 6, 0 
66 -65 6s -66 0 68 
60 0 -6s 68 6, 6s 
0 6s 0 68 -6, -6, 

-6.3 0 6z3 6.9 -6, 68 

62 0 -6, 6, 6, 6, 
0 61 0 6, -6, -6, 

-62 0 6, 6, -6, 6, 
63 63 63 6s 0 -6, 
6, -6, -6, 0 6, 0 
6, -6, S3 -6, 0 6, 

( 6s -6s ,6s -66 0 Se3 
-6, -6s 6s 0 6, o 

& 6s 6, 6s 0 -6.g 
-6, 0 6s 68 -6, 68 

0 6s 0 -6, -6, Sa 
i 66 0 -6, 6, 6s 6, 

6,= y(N' - 1, 1, N-l, 1 -N-l, N-N-', N-1, N-' -N-3, N-3). 
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